4755 (FP1) Further Concepts for Advanced Mathematics

PMT

1	$\alpha\beta = (-3+j)(5-2j) = -13+11j$	M1 A1 [2]	Use of $j^2 = -1$
	$\frac{\alpha}{\beta} = \frac{-3+j}{5-2j} = \frac{(-3+j)(5+2j)}{29} = \frac{-17}{29} - \frac{1}{29}j$	M1 A1 A1 [3]	Use of conjugate 29 in denominator All correct
2 (i)	AB is impossible	B1	
	$\mathbf{CA} = (50)$	B1	
	$\mathbf{B} + \mathbf{D} = \begin{pmatrix} 3 & 1 \\ 6 & -2 \end{pmatrix}$	B1	
	$\mathbf{AC} = \begin{pmatrix} 20 & 4 & 32 \\ -10 & -2 & -16 \\ 20 & 4 & 32 \end{pmatrix}$	B2	−1 each error
(ii)	$\mathbf{DB} = \begin{pmatrix} -2 & 0 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} 5 & 1 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} -10 & -2 \\ 22 & 1 \end{pmatrix}$	M1 A1 [2]	Attempt to multiply in correct order c.a.o.
3	$\alpha + \beta + \gamma = a - d + a + a + d = \frac{12}{4} \Rightarrow a = 1$	M1 A1	Valid attempt to use sum of roots $a = 1$, c.a.o.
	$(a-d)a(a+d) = \frac{3}{4} \Rightarrow d = \pm \frac{1}{2}$	M1	Valid attempt to use product of roots
	So the roots are $\frac{1}{2}$, 1 and $\frac{3}{2}$	A1	All three roots
	$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{k}{4} = \frac{11}{4} \Rightarrow k = 11$	M1	Valid attempt to use $\alpha\beta + \alpha\gamma + \beta\gamma$, or to multiply out factors, or to substitute a root
		A1 [6]	k = 11 c.a.o.

	T		
4	$\mathbf{M}\mathbf{M}^{-1} = \frac{1}{k} \begin{pmatrix} 4 & 0 & 1 \\ -6 & 1 & 1 \\ 5 & 2 & 5 \end{pmatrix} \begin{pmatrix} -3 & -2 & 1 \\ -35 & -15 & 10 \\ 17 & 8 & -4 \end{pmatrix}$	M1	Attempt to consider MM ⁻¹ or M ⁻¹ M (may be implied)
	$= \frac{1}{k} \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix} \Rightarrow k = 5$	A1 [2]	c.a.o.
	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{5} \begin{pmatrix} -3 & -2 & 1 \\ -35 & -15 & 10 \\ 17 & 8 & -4 \end{pmatrix} \begin{pmatrix} 9 \\ 32 \\ 81 \end{pmatrix} $	M1	Attempt to pre-multiply by \mathbf{M}^{-1}
		M1	Attempt to multiply matrices
	$\begin{bmatrix} \frac{1}{5} \begin{pmatrix} -3 & -2 & 1\\ -35 & -15 & 10\\ 17 & 8 & -4 \end{bmatrix} \begin{pmatrix} 9\\ 32\\ 81 \end{bmatrix} = \frac{1}{5} \begin{pmatrix} -10\\ 15\\ 85 \end{bmatrix}$	A1	Correct
	(17 8 -4)(81) (85) $\Rightarrow x = -2, y = 3, z = 17$	A1 [4]	All 3 correct s.c. B1 if matrices not used
5	$\sum_{r=1}^{n} (r+2)(r-3) = \sum_{r=1}^{n} (r^{2} - r - 6)$		
	$=\sum_{r=1}^{n}r^{2}-\sum_{r=1}^{n}r-6n$	M1	Separate into 3 sums
	$= \frac{1}{6}n(n+1)(2n+1) - \frac{1}{2}n(n+1) - 6n$	A2	−1 each error
	$= \frac{1}{6}n[(n+1)(2n+1)-3(n+1)-36]$	M1	Valid attempt to factorise (with <i>n</i> as a factor)
	$= \frac{1}{6}n(2n^2 - 38) = \frac{1}{3}n(n^2 - 19)$	A1 A1 [6]	Correct expression c.a.o. Complete, convincing argument
6	When $n = 1$, $\frac{n(n+1)(n+2)}{3} = 2$,	B1	
	so true for $n = 1$ Assume true for $n = k$	E1	Assume true for <i>k</i>
	$2+6++k(k+1) = \frac{k(k+1)(k+2)}{3}$		
	$\Rightarrow 2+6++(k+1)(k+2)$	M1	Add $(k+1)$ th term to both sides
	$= \frac{k(k+1)(k+2)}{3} + (k+1)(k+2)$		
	$= \frac{1}{3}(k+1)(k+2)(k+3)$	A1	c.a.o. with correct simplification
	$=\frac{(k+1)((k+1)+1)((k+1)+2)}{3}$		
	But this is the given result with $k + 1$ replacing k . Therefore if it is true for $n = k$ it is true for $n = k + 1$.	E1	Dependent on A1 and previous E1
	Since it is true for $n = 1$, it is true for $n = 1, 2, 3$ and so true for all positive integers.	E1 [6]	Dependent on B1 and previous E1
L	r	["]	<u>i</u>

7	(i)	_7	3 0
		$x = \frac{1}{2}$, x	$=\frac{1}{2}, y=0$
			_

B1 B1 B1

[3]

[3]

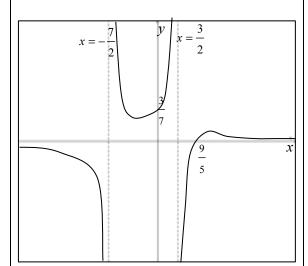
(ii)

4755

Large positive $x, y \rightarrow 0^+$ (e.g. consider x = 100) Large negative $x, y \rightarrow 0^-$ (e.g. consider x = -100) B1 B1 M1

Evidence of method

(iii)



B1

В1

[3]

Intercepts correct and labelled

B1 LH and central branches correct

RH branch correct, with clear maximum

(iv)

 $x < -\frac{7}{2}$ or $\frac{3}{2} < x \le \frac{9}{5}$

В1

B2 Award B1 if only error relates to inclusive/exclusive inequalities

[3]

8(a) (i)	$\left z - (2 + 6j) = 4 \right $
----------	-------------------------------------

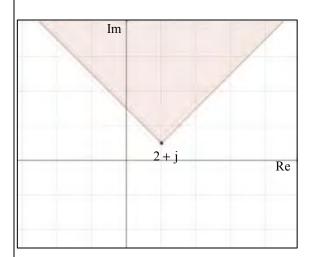
4755

(b)(i)

(ii)

8(a) (i)	$\left \left z - (2 + 6j) \right = 4$
----------	--

(ii)
$$|z-(2+6j)| < 4 \text{ and } |z-(3+7j)| > 1$$



$$\arg (41+46j) = \arctan \left(\frac{46}{41}\right) = 0.843$$

$$\frac{\pi}{4} < 0.843 < \frac{3\pi}{4}$$
so 43+47j does fall within the region

43 + 47j - (2 + j) = 41 + 46j

B1	2 + 6j seen
B1	(expression in z) = 4
B1	Correct equation
[3]	•

B1
$$|z-(2+6j)| < 4$$

B1 $|z-(3+7j)| > 1$

[3]

(allow errors in inequality signs) Both inequalities correct В1

Attempt to calculate argument, or M1 other valid method such as comparison with y = x - 1

Correct **A**1 Justified

E1 [3] 4755

=0.0104 (3s.f.)

9 (i)			
9 (i)	$\frac{2}{r} - \frac{3}{r+1} + \frac{1}{r+2}$		
	$= \frac{2(r+1)(r+2) - 3r(r+2) + r(r+1)}{r(r+1)(r+2)}$	M1	Attempt a common denominator
	$= \frac{2r^2 + 6r + 4 - 3r^2 - 6r + r^2 + r}{r(r+1)(r+2)} = \frac{4+r}{r(r+1)(r+2)}$	A1 [2]	Convincingly shown
(ii)	$\sum_{r=1}^{n} \frac{4+r}{r(r+1)(r+2)} = \sum_{r=1}^{n} \left[\frac{2}{r} - \frac{3}{r+1} + \frac{1}{r+2} \right]$	M1	Use of the given result (may be implied)
	$= \left(\frac{2}{1} - \frac{3}{2} + \frac{1}{3}\right) + \left(\frac{2}{2} - \frac{3}{3} + \frac{1}{4}\right) + \left(\frac{2}{3} - \frac{3}{4} + \frac{1}{5}\right) + \dots$	M1	Terms in full (at least first and one other)
	$ + \left(\frac{2}{n-1} - \frac{3}{n} + \frac{1}{n+1}\right) + \left(\frac{2}{n} - \frac{3}{n+1} + \frac{1}{n+2}\right)$	A2	At least 3 consecutive terms correct, -1 each error
	$= \frac{2}{1} - \frac{3}{2} + \frac{2}{2} + \frac{1}{n+1} - \frac{3}{n+1} + \frac{1}{n+2}$	M1	Attempt to cancel, including algebraic terms
	$= \frac{3}{2} - \frac{2}{n+1} + \frac{1}{n+2}$ as required	A1 [6]	Convincingly shown
(iii)	$\frac{3}{2}$	B1 [1]	
(iv)	$\frac{100}{100}$ 4+r	[*]	
` ,	$\sum_{r=50}^{100} \frac{4+r}{r(r+1)(r+2)}$		
	$= \sum_{r=1}^{100} \frac{4+r}{r(r+1)(r+2)} - \sum_{r=1}^{49} \frac{4+r}{r(r+1)(r+2)}$	M1	Splitting into two parts
	$=\left(\frac{3}{2} - \frac{2}{101} + \frac{1}{102}\right) - \left(\frac{3}{2} - \frac{2}{50} + \frac{1}{51}\right)$	M1	Use of result from (ii)
	(2 101 102) (2 30 31)	Α 1	2.2.2

A1

[3]

c.a.o.